YEC vs FE Part 1: Evidence for YEC

Given that @jeffb has claimed the Southern African Plateau as a “better” example of Neller’s ‘plateau’ claims, and Neller himself, in the first video Jeff posted, briefly alludes to Africa’s extensive plateaus, I thought it might be useful to see what the scientific literature has to say on the subject.

A quick Google Scholar search turned up three, reasonably-widely cited, articles that appear to be relevant:

  1. Rapid erosion of the Southern African Plateau as it climbs over a mantle superswell

Abstract

We present new sedimentary flux data confirming that a large pulse of erosion affected the Southern African Plateau in the Late Cretaceous and is likely to be related to a major uplift episode of the plateau. This short phase of erosion (i.e., less than 30 Myr in duration) has commonly been difficult to reconcile with a mantle origin for the plateau anomalous uplift: given its size, the rise of the African superplume is likely to have lasted much longer. Here we demonstrate by using a simple model for fluvial erosion that tilting of the continent as it rides over a wide dynamic topography high cannot only cause rapid uplift of the plateau but also trigger continent-wide drainage reorganization, leading to substantial denudation in a relatively short amount of time. The amplitude and short duration of the sedimentary pulse are best reproduced by assuming a strong erodibility contrast between the Karoo sedimentary and volcanic rocks and the underlying basement. We also present a new compilation of paleoclimate indicators that shows a transition from arid to very humid conditions approximately at the onset of the documented erosional pulse, suggesting that climate may have also played a role in triggering the denudation. The diachronism of the sedimentary flux between the eastern and western margins of the plateau and the temporal and geographic coincidence between the uplift and kimberlite eruptions are, however, better explained by our tilt hypothesis driven by the migration of the continent over a fixed source of mantle upwelling.

  1. Long lasting epeirogenic uplift from mantle plumes and the origin of the Southern African Plateau

Abstract

[1] We investigate under what conditions the present-day long wavelength anomalous elevation (∼500 m) of the southern African Plateau can be attributed to Mesozoic plume events. The anomalous, long wavelength topography of the southern African Plateau cannot be easily explained by recent heating of the upper mantle, as opposed to other areas of the African Superswell, and geomorphological studies provide few hard constraints on the timing of the uplift. A Mesozoic origin for the plateau uplift is attractive in that southern Africa experienced several large magmatic events in the Mesozoic. We formulate numerical and scaling models to investigate if plume material ponded beneath cratonic lithosphere in the Mesozoic could produce 500 m of present-day elevation. We find that starting plume heads are ineffective at producing much long lasting uplift because the material spreads into a thin layer, tens of km thick. The ponded plume material also suppresses secondary convection by having a stable boundary at its base. Over time, heat continues to flow out of the top of the lithosphere, and a net imbalance of heat flow in the lithosphere develops, resulting in subsidence. Even after the plume material has cooled to the temperature of the mantle adiabat, secondary convection supplies less heat to the lithosphere than is lost upward by conduction. The cratonic lithosphere returns to its original thermal structure on a timescale of less than 200 m.y. Even two mantle starting plume heads, one at the time of Karoo volcanism (ca.183 Ma) and the other at the time of kimberlite eruption (ca. 80–90 Ma) in our models, cannot produce much (<200 m) of the present-day anomalous elevation. However, significant uplift can be generated by plume tails, provided they linger beneath the lithosphere for ∼25–30 m.y., and if the uplift effects of Mesozoic plume heads and tails are considered together, then it is possible to account for ∼500 m of present-day elevation. Consequently, a Mesozoic plume model for plateau uplift in southern Africa appears to be a viable model, if plume tails delivered heat to the southern African lithosphere over a period of 25 m.y. or more.

  1. (U-Th)/He thermochronometry constraints on unroofing of the eastern Kaapvaal craton and significance for uplift of the southern African Plateau

Abstract

The timing and causes of the >1.0 km elevation gain of the southern African Plateau since Paleozoic time are widely debated. We report the first apatite and titanite (U-Th)/He thermochronometry data for southern Africa to resolve the unroofing history across a classic portion of the major escarpment that encircles the plateau. The study area encompasses ∼1500 m of relief within Archean basement of the Barberton Greenstone Belt region of the eastern Kaapvaal craton. Titanite dates are Neoproterozoic. Apatite dates are Cretaceous, with most results clustering at ca. 100 Ma. Thermal history simulations confirm Mesozoic heating followed by accelerated cooling in mid- to Late Cretaceous time. The lower temperature sensitivity of the apatite (U-Th)/He method relative to previous thermochronometry in southern Africa allows tighter constraints on the Cenozoic thermal history than past work. The data limit Cenozoic temperatures east of the escarpment to ≤35 °C, and appear best explained by temperatures within a few degrees of the modern surface temperature. These results restrict Cenozoic unroofing to less than ∼850 m, and permit negligible erosion since the Cretaceous. If substantial uplift of the southern African Plateau occurred in the Cenozoic as advocated by some workers, then it was not responsible for the majority of post-Paleozoic unroofing across the eastern escarpment. Significant Mesozoic unroofing is coincident with large igneous province activity, kimberlite magmatism, and continental rifting within and along the margins of southern Africa, compatible with a phase of plateau elevation gain due to mantle buoyancy sources associated with these events.

These papers appear to offer a far more detailed treatment of the geology of this plateau, and present it as far more complex, than Neller’s simplistic treatment in the videos. Although I am not a geologist, even my layman’s reading of them would suggest that they present the geological issues with this plateau raises as radically different from what Neller claims.

A brief search could find no publications by Neller on the subject of the Southern African Plateau – or on any plateau.